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a b s t r a c t

Two new subclasses of harmonic univalent functions defined by convolution are intro-
duced. The subclasses generate a number of known subclasses of harmonic mappings, and
thus provide a unified treatment in the study of these subclasses. Sufficient coefficient con-
ditions are obtained that are shown to be also necessary when the analytic parts of the har-
monic functions have negative coefficients. Growth estimates and extreme points are also
determined.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Harmonic mappings in a domain D of the complex plane are univalent complex-valued harmonic functions f = u + iv
where both u and v are real harmonic. These mappings are important in the study of minimal surfaces. Harmonic mappings
have been investigated as generalizations of conformalmappings. The seminalworks of Clunie and Sheil-Small [1] and Sheil-
Small [2] showed that while certain classical results for conformal mappings have analogues for harmonic mappings, many
other basic questions remain unsolved.
Every harmonic function f in a simply connected domain can be expressed in the form f = h+ g , where both h and g are

analytic. The function h is called the analytic part while g is the co-analytic part of f . A necessary and sufficient condition [1]
for f to be locally univalent and sense preserving in D is for |g ′(z)| < |h′(z)| in D.
Let SH denote the class of functions f = h + g that are harmonic univalent and sense preserving in the unit disk

U = {z : |z| < 1} and normalized by the conditions h(0) = 0 = h′(0) − 1, and g(0) = 0. Denote by S0H the subclass
of SH for which g ′(0) = 0. A function f ∈ SH belongs to the classical normalized class of univalent analytic functions S if the
co-analytic part of f is zero.
Of late, various subclasses of SH have been introduced and studied by several authors [3–11]. We shall show in this note

that these subclasses are special cases of the general class S0H(φ, σ , α) given in the following definition.

Definition 1.1. Let σ be a real constant and φ(z) = z +
∑
∞

n=2 φnz
n be a given analytic function in U . A harmonic function

f = h+ g ∈ S0H where

h(z) = z +
∞∑
n=2

anzn, g(z) =
∞∑
n=2

bnzn, (1.1)
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belongs to the class S0H(φ, σ , α) if

<

{
z(h ∗ φ)′(z)− σ z(g ∗ φ)′(z)

(h ∗ φ)(z)+ σ(g ∗ φ)(z)

}
> α, (0 ≤ α < 1; z ∈ U). (1.2)

Here ∗ is the convolution operator.

Equivalently, with F(z) = (φ+σφ)∗(h(z)+g(z)), the function f ∈ S0H(φ, σ , α) provided
∂
∂θ
arg(F(reiθ )) ≥ α on |z| = r .

Several subclasses of harmonic functions are special cases of the new class S0H(φ, σ , α) for suitable choices of φ and σ . It

is obvious that S0H
( z
1−z , 1, 0

)
and K 0H

(
z

(1−z)2
,−1, 0

)
are respectively the well-known classes S∗

0

H of harmonic starlike and

K 0H harmonic convex functions investigated by Silverman [10]. The general classes S
0
H

( z
1−z , 1, α

)
and K 0H

(
z

(1−z)2
,−1, α

)
coincide with S0H(α) and K

0
H(α) studied by Jahangiri in [7,6]. If σ = (−1)l and φ(z) = z +

∑
∞

n=2 n
lzn, then the class

S0H(φ, σ , α) reduces to the class H(l, α) involving the modified Salagean operator investigated in [8]. Another example is
when σ = 1 and φ = z

(1−z)λ+1
, λ > −1. In this case, S0H(φ, σ , α) becomes the class RH(λ, α) involving the Ruscheweyh

derivative operator [9]. If σ = (−1)l and φ = z +
∑
∞

n=2 n
lC(λ, n)zn, where C(λ, n) = (λ+1)n−1

(n−1)! , (λ + 1)n−1 =
(λ + 1)(λ + 2) · · · (λ + n − 1), then S0H(φ, σ , α) reduces to the class MH(l, λ, α) recently investigated by Al-Shaqsi and
Darus [4]. It is clear that the class S0H(φ, σ , α) generates a number of known subclasses and thus provides a unified treatment
of these subclasses of harmonic mappings.
In Section 2 of this note, a necessary and sufficient convolution condition is obtained for S0H(φ, σ , α) and the class

SP0H(φ, σ , α). Sufficient coefficient conditions are obtained for these two classes, which in Section 3 will also be shown
to be necessary when f has negative coefficients. Section 3 is also devoted to determining growth estimates and extreme
points for the class TS0H(φ, σ , α).

2. Main results

We now derive a convolution characterization for functions in the class S0H(φ, σ , α).

Theorem 2.1. Let f = h+ g ∈ S0H . Then f ∈ S
0
H(φ, σ , α) if and only if

(h ∗ φ) ∗

[
z + x+2α−1

2−2α z
2

(1− z)2

]
− σ(g ∗ φ) ∗

[
x+α
1−α z −

x+2α−1
2−2α z

2

(1− z)2

]
6= 0, |x| = 1, |z| 6= 0. (2.1)

Proof. A necessary and sufficient condition for f = h + g to be in the class S0H(φ, σ , α), with h and g of the form (1.1), is
given by (1.2). Since

z(h ∗ φ)′(z)− σ z(g ∗ φ)′(z)

(h ∗ φ)(z)+ σ(g ∗ φ)(z)
= 1

at z = 0, the condition (1.2) is equivalent to

1
(1− α)

{
z(h ∗ φ)′(z)− σ z(g ∗ φ)′(z)

(h ∗ φ)(z)+ σ(g ∗ φ)(z)
− α

}
6=
x− 1
x+ 1

; |x| = 1, x 6= −1, 0 < |z| < 1. (2.2)

By a simple algebraic manipulation, (2.2) yields

0 6= (x+ 1)
[
z(h ∗ φ)′(z)− σ z(g ∗ φ)′(z)

]
− α(x+ 1)

[
(h ∗ φ)(z)+ σ(g ∗ φ)(z)

]
− (x− 1)(1− α)

[
(h ∗ φ)(z)+ σ(g ∗ φ)(z)

]
= (h ∗ φ) ∗

[
2(1− α)z + (x− 1+ 2α)z2

(1− z)2

]
− σ(g ∗ φ) ∗

[
2(x+ α)z − (x+ 2α − 1)z2

(1− z)2

]
.

The latter condition together with (1.2) establishes the result (2.1) for all |x| = 1. �

Necessary coefficient conditions for the harmonic starlike functions and harmonic convex functions were obtained in [1]
and [2]. Using the convolution characterization, we now derive a sufficient coefficient condition for harmonic functions to
belong to the class S0H(φ, σ , α).
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Theorem 2.2. Let f = h+ g ∈ S0H . Then f ∈ S
0
H(φ, σ , α) if

∞∑
n=2

n− α
1− α

|an| |φn| + |σ |
∞∑
n=2

n+ α
1− α

|bn| |φn| ≤ 1.

Proof. For h and g given by (1.1), (2.1) gives∣∣∣∣∣(h ∗ φ) ∗
[
z + x+2α−1

2−2α z
2

(1− z)2

]
− σ(g ∗ φ) ∗

[
x+α
1−α z −

x+2α−1
2−2α z

2

(1− z)2

]∣∣∣∣∣
=

∣∣∣∣∣z + ∞∑
n=2

[
n+ (n− 1)

x+ 2α − 1
2− 2α

]
anφnzn − σ

∞∑
n=2

[
n
x+ α
1− α

− (n− 1)
x+ 2α − 1
2− 2α

]
bnφnzn

∣∣∣∣∣
> |z|

[
1−

∞∑
n=2

n− α
1− α

|an| |φn| − |σ |
∞∑
n=2

n+ α
1− α

|bn| |φn|

]
.

The last expression is non-negative by hypothesis, and hence by Theorem 2.1, it follows that f ∈ S0H(φ, σ , α). �

The sufficient coefficient conditions for the various classes S∗H(α), KH(α),H(l, α), RH(λ, α) andMH(l, λ, α) are all special
cases of Theorem 2.2.
Another set of classes of harmonic functions introduced by several authors relates to the analytic univalent classes of

uniformly convex functions and parabolic starlike functions. A survey of these functions can be found in [12]. Such subclasses
of harmonic functions include the classes GH(α) and GKH(α) of Goodman–Rønning-type harmonic functions studied in
[13,14] and the classes RSH(l, γ ) [11] andMH(n, α) [5] involving respectively the Salagean-type operator and Ruscheweyh
operator. All these classes can again be given a unified treatment by considering the following class of functions.

Definition 2.1. Let σ be a real constant and φ(z) = z +
∑
∞

n=2 φnz
n be a given analytic function in U . A harmonic function

f = h+ g ∈ S0H belongs to the class SP
0
H(φ, σ , α) if

<

{
(1+ eiγ )

z(h ∗ φ)′(z)− σ z(g ∗ φ)′(z)

(h ∗ φ)(z)+ σ(g ∗ φ)(z)
− eiγ

}
> α, (γ real, 0 ≤ α < 1, z ∈ U). (2.3)

Theorem 2.3. Let f = h+ g ∈ S0H . Then f ∈ SP
0
H(φ, σ , α) if and only if

(h ∗ φ) ∗

 z + (x+1)eiγ+x+2α−1
2−2α z2

(1− z)2

− σ(g ∗ φ) ∗
 (x+1)eiγ+x+α

1−α z − (x+1)eiγ+x+2α−1
2−2α z2

(1− z)2

 6= 0, |x| = 1, z 6= 0.
Proof. A necessary and sufficient condition for f in SP0H(φ, σ , α), with h and g of the form (1.1), is given by (2.3). Since

(1+ eiγ )
z(h ∗ φ)′(z)− σ z(g ∗ φ)′(z)

(h ∗ φ)(z)+ σ(g ∗ φ)(z)
− eiγ = 1

at z = 0, condition (2.3) is equivalent to

1
(1− α)

{
(1+ eiγ )

z(h ∗ φ)′ − σ z(g ∗ φ)′

(h ∗ φ)+ σ(g ∗ φ)
− eiγ − α

}
6=
x− 1
x+ 1

; |x| = 1, x 6= −1, z 6= 0.

This now yields the desired result. �

Proceeding similarly to in Theorem 2.2, the following sufficient coefficient condition for the class SP0H(φ, σ , α) is easily
derived.

Theorem 2.4. Let f = h+ g ∈ S0H . Then f ∈ SP
0
H(φ, σ , α) if

∞∑
n=2

2n− 1− α
1− α

|an| |φn| + |σ |
∞∑
n=2

2n+ 1+ α
1− α

|bn| |φn| ≤ 1.

3. The class TS0
H (φ, σ, α)

Several subclasses of analytic functions with negative coefficients have been introduced and studied following the work
of Silverman [15]. A unified class of analytic p-valent functions with negative coefficients defined by convolution was
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introduced in [16] that included many well-known subclasses of analytic functions with negative coefficients as special
cases. In this section, we shall devote attention to the subclass TS0H(φ, σ , α) of S

0
H(φ, σ , α) consisting of harmonic functions

f = h+ ḡ of the form

h(z) = z −
∞∑
n=2

anzn, g(z) = σ
∞∑
n=2

bnzn, an ≥ 0, bn ≥ 0. (3.1)

The subclass TS0H(φ, σ , α) includes as special cases several subclasses investigated in [4,6–9].

Theorem 3.1. Let φ(z) = z +
∑
∞

n=2 φnz
n with φn ≥ 0 and f be of the form (3.1). Then f ∈ TS0H(φ, σ , α) if and only if

∞∑
n=2

n− α
1− α

anφn + σ 2
∞∑
n=2

n+ α
1− α

bnφn ≤ 1. (3.2)

Proof. If f belongs to TS0H(φ, σ , α), then (1.2) is equivalent to

<


(1− α)z −

∞∑
n=2
(n− α)anφnzn − σ 2

∞∑
n=2
(n+ α)bnφnzn

z −
∞∑
n=2
anφnzn + σ 2

∞∑
n=2
bnφnzn

 > 0

for z ∈ U . Letting z → 1− through real values yields condition (3.2). Conversely, for h and g given by (3.1),∣∣∣∣∣(h ∗ φ) ∗
[
z + x+2α−1

2−2α z
2

(1− z)2

]
− σ(g ∗ φ) ∗

[
x+α
1−α z −

x+2α−1
2−2α z

2

(1− z)2

]∣∣∣∣∣
> |z|

[
1−

∞∑
n=2

n− α
1− α

|an| |φn| − σ 2
∞∑
n=2

n+ α
1− α

|bn| |φn|

]
which is non-negative by hypothesis, thus proving sufficiency of condition (3.2). �

We can obtain as a corollary sharp bounds for |f (z)|, for f ∈ TS0H(φ, σ , α).

Corollary 3.1. Let φ(z) = z +
∑
∞

n=2 φnz
n with φn ≥ φ2 (n ≥ 2), and |σ | ≥ 2−α

2+α . If f ∈ TS
0
H(φ, σ , α), then for |z| = r < 1,

r −
1− α

(2− α)φ2
r2 ≤ |f (z)| ≤ r +

1− α
(2− α)φ2

r2.

The result is sharp with equality for f (z) = z − 1−α
(2−α)φ2

z2.

Thus the range of functions in TS0H(φ, σ , α) covers the disk |w| < 1− (1− α)/[(2− α)φ2].
It can also be seen that the class TS0H(φ, σ , α) is convex.
We now determine the extreme points of the class TS0H(φ, σ , α).

Theorem 3.2. Let

h1(z) := z, hn(z) := z −
1− α

(n− α)φn
zn, and gn(z) := z +

1− α
σ(n+ α)φn

zn, (n = 2, 3, . . .).

A function f ∈ TS0H(φ, σ , α) if and only if f can be expressed in the form

f (z) =
∞∑
n=1

(λnhn + γngn),

where λn ≥ 0, γn ≥ 0, λ1 = 1 −
∑
∞

n=2(λn + γn), and γ1 = 0. In particular, the extreme points of TS
0
H(φ, σ , α) are {hn} and

{gn}.

Proof. Let

f (z) =
∞∑
n=1

(λnhn + γngn) = z −
∞∑
n=2

λn
1− α

(n− α)φn
zn + σ

∞∑
n=2

γn
1− α

σ 2(n+ α)φn
zn.

Since
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∞∑
n=2

n− α
1− α

λn
1− α

(n− α)φn
φn + σ

2
∞∑
n=2

n+ α
1− α

γn
1− α

σ 2(n+ α)φn
φn =

∞∑
n=2

(λn + γn) = 1− λ1 ≤ 1,

it follows from Theorem 3.1 that f ∈ TS0H(φ, σ , α).
Conversely, if f ∈ TS0H(φ, σ , α), then an ≤

1−α
(n−α)φn

and bn ≤ 1−α
σ 2(n+α)φn

. Set

λn =
n− α
1− α

anφn, γn =
n+ α
1− α

bnφnσ 2, λ1 = 1−
∞∑
n=2

(λn + γn), and γ1 = 0.

Then
∞∑
n=1

(λnhn + γngn) = z −
∞∑
n=2

anzn + σ
∞∑
n=2

bnzn = f (z). �
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