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1. Introduction

Harmonic mappings in a domain D of the complex plane are univalent complex-valued harmonic functions f = u + iv
where both u and v are real harmonic. These mappings are important in the study of minimal surfaces. Harmonic mappings
have been investigated as generalizations of conformal mappings. The seminal works of Clunie and Sheil-Small [ 1] and Sheil-
Small [2] showed that while certain classical results for conformal mappings have analogues for harmonic mappings, many
other basic questions remain unsolved.

Every harmonic function f in a simply connected domain can be expressed in the form f = h+ g, where both h and g are
analytic. The function h is called the analytic part while g is the co-analytic part of f. A necessary and sufficient condition [1]
for f to be locally univalent and sense preserving in D is for |g’(z)| < |h'(2)| in D.

Let Sy denote the class of functions f = h + g that are harmonic univalent and sense preserving in the unit disk
U = {z : |z| < 1} and normalized by the conditions h(0) = 0 = h’(0) — 1, and g(0) = 0. Denote by Sf, the subclass
of Sy for which g’(0) = 0. A function f € Sy belongs to the classical normalized class of univalent analytic functions S if the
co-analytic part of f is zero.

Of late, various subclasses of Sy have been introduced and studied by several authors [3-11]. We shall show in this note
that these subclasses are special cases of the general class S,S (¢, o, @) given in the following definition.

Definition 1.1. Let o be a real constant and ¢(z) = z + Y .-, ¢,2" be a given analytic function in U. A harmonic function
f=h+g €S}, where

h@=z+) az". g@) =) ba", (1.1)
n=2

n=2
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belongs to the class S(¢, o, &) if

% z(h* ) (2) —oz(g *9)'(2)
(h*$)(2) +0(g *¢)(2)

Here * is the convolution operator.

}>a, O<a<T1;zel). (1.2)

Equivalently, with F(z) = (¢ +0¢)* (h(z) +g(2)), the functionf € S{(¢, o, a) provided - arg(F(re'?)) > aonz| =T.
Several subclasses of harmonic functions are special cases of the new class SE, (¢, o, a) for suitable choices of ¢ and o. It

_Z_

is obvious that Sf, (7%,

1, 0) and K,S ((1—%)2 -1, O) are respectively the well-known classes S,’f,o of harmonic starlike and
K§ harmonic convex functions investigated by Silverman [10]. The general classes S (7%, 1, &) and K} (ﬁ -1, oz)
coincide with Sg(oz) and Kg(a) studied by Jahangiri in [7,6]. f o = (—=1)' and ¢(z) = z + Z;’iz n'z", then the class
5,3 (¢, o, @) reduces to the class H(l, @) involving the modified Salagean operator investigated in [8]. Another example is

wheno = land ¢ = “_Zw A > —1. In this case, Sg (¢, o, @) becomes the class Ry (X, @) involving the Ruscheweyh

derivative operator [9]. If 0 = (=1)'and ¢ = z + Y oo, n'C(x,n)z", where C(A,n) = (’\(ﬁ)f)‘!’ LA+ Dy =

A+1DA+2)---(A+n—1), then Sf, (¢, o, o) reduces to the class My (I, A, @) recently investigated by Al-Shaqsi and
Darus [4].Itis clear that the class 52 (¢, o, @) generates a number of known subclasses and thus provides a unified treatment
of these subclasses of harmonic mappings.

In Section 2 of this note, a necessary and sufficient convolution condition is obtained for 52 (¢, o, @) and the class
SP,S (¢, o, ). Sufficient coefficient conditions are obtained for these two classes, which in Section 3 will also be shown
to be necessary when f has negative coefficients. Section 3 is also devoted to determining growth estimates and extreme
points for the class TS (¢, o, «).

2. Main results
We now derive a convolution characterization for functions in the class S}} (P, 0, ).

Theorem 2.1. Let f = h+g € S). Thenf € S}y (¢, o, @) if and only if

e =l B etk =
(x| =327 | ~oE*) = a2 #0, |x|=1, |z| #£0. (2.1)

Proof. A necessary and sufficient condition for f = h 4 g to be in the class Sg (¢, 0, ), with h and g of the form (1.1), is
given by (1.2). Since

2(hx)'(2) —oz(g *¢)'@) _ 1
(h+)(2) +0(g *¢)(2)

at z = 0, the condition (1.2) is equivalent to

1 {z(nw)/(z)—az(gw)?(z)_a};éx—y X1kt 0=z <1 02

- | (hx)@) +0E*P@) X+ 1

By a simple algebraic manipulation, (2.2) yields
0# x+ 1|29/ @ —02E+ /@] —alx+ D [(hx )@ + 0+ $) D]
—x- D) [(1x$)@) +0E*H @]

_ _ 2
20 —a)z+ (x— 14+ 2x)z j|—0(g*¢)*

B 2+ a)z — (x + 2a — 1)z2
_(h*¢)*[ 1—272 |: :|

(1-2)
The latter condition together with (1.2) establishes the result (2.1) forall [x| = 1. O

Necessary coefficient conditions for the harmonic starlike functions and harmonic convex functions were obtained in [1]
and [2]. Using the convolution characterization, we now derive a sufficient coefficient condition for harmonic functions to
belong to the class S5 (¢, o, @).
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Theorem 2.2. Let f =h+g € S5. Thenf € SY(¢, o, ) if

OOn_
21

n=2

a ¢ + |o E b (b .
n n o _l n nl =

Proof. For h and g given by (1.1), (2.1) gives

z+ x+2a7122 er_aZ _ x+2a7122
M*m*[——lﬁﬂ— —o(gxp) x| T2

(1—2)? (1-2)?
> X+ 20 — X+« X+20—1]——
— D — T\ bpz
z+HP+m ) }MW oZ[ (n )Z_M}nw
1= 3 P il — 1013 P I 1
nzz]_a n n nzz]_a n n .

The last expression is non-negative by hypothesis, and hence by Theorem 2.1, it follows that f € S{_’, (¢p,0,). O

The sufficient coefficient conditions for the various classes Sj;(«), Ky (o), H(I, o), Ry (A, &) and My (I, A, ) are all special
cases of Theorem 2.2.

Another set of classes of harmonic functions introduced by several authors relates to the analytic univalent classes of
uniformly convex functions and parabolic starlike functions. A survey of these functions can be found in [12]. Such subclasses
of harmonic functions include the classes Gy () and GKy (o) of Goodman-Renning-type harmonic functions studied in
[13,14] and the classes RSy (I, ) [11] and My (n, ) [5] involving respectively the Salagean-type operator and Ruscheweyh
operator. All these classes can again be given a unified treatment by considering the following class of functions.

Definition 2.1. Let o be a real constant and ¢(z) = z + Y .-, ¢,2" be a given analytic function in U. A harmonic function
f =h+g € S} belongs to the class SPH(¢, o, &) if

z(hx¢)'(2) —oz(gx¢)' (@) o7

(1+4e7) o -
(h*@)(2) +o(g*d)(2)

>a, (yreal, 0 <a <1, zel). (2.3)

Theorem 2.3. Let f = h+g € S5. Thenf € SPH(¢, o, ) if and only if

(x+1)eiy+x+2aflzz (x+1)el” +x+o¢2 _ (x+1)eiy+x+2a7122
h s @) * 22 —o(g*p) * L __ 2 0, |xl=1,z#0.
(h* ) e @9 — 40, X =1 z#

Proof. A necessary and sufficient condition for f in SPE, (¢, o, ), with h and g of the form (1.1), is given by (2.3). Since

(14 er)?x 9@ -0z @ oy _
(hx¢)(2)+o0(g*d)(2)

at z = 0, condition (2.3) is equivalent to

(o205 —ZEF D,
(1-a) (h+¢)+0@*d)

This now yields the desired result. O

x—1
— x| =1, x#%# -1, z#0.
# o # #

Proceeding similarly to in Theorem 2.2, the following sufficient coefficient condition for the class SP,S (¢, 0, @) is easily
derived.

Theorem 2.4. Let f = h+g € S). Thenf € SP}(¢, o, ) if

= +1+a
}: MM%%HME: |bal Ial < 1.

n=2

3. The class TS} (¢, o, &)

Several subclasses of analytic functions with negative coefficients have been introduced and studied following the work
of Silverman [15]. A unified class of analytic p-valent functions with negative coefficients defined by convolution was
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introduced in [16] that included many well-known subclasses of analytic functions with negative coefficients as special
cases. In this section, we shall devote attention to the subclass TSf, (¢,0, ) ofo, (¢, o, @) consisting of harmonic functions
f = h+ g of the form

o0 o
h(z) =z — Zanz”, g@2) =0 anz”, a, >0, b, >0. (3.1)
n=2 n=2

The subclass TSE, (¢, o, ) includes as special cases several subclasses investigated in [4,6-9].

Theorem 3.1. Let ¢(z) =z + Z;’; ¢nz" with ¢, > 0 and f be of the form (3.1). Then f € TS?, (¢, 0, ) ifand only if

N — e~ N+
DT Wdnto ;1_abn¢ns1. (3.2)

n=2

Proof. If f belongs to TSf, (¢, 0, @), then (1.2) is equivalent to

o o0
(1—-a)z— Z(Tl — a)apPpz" — o? Z (n+ a)bn¢nzn
% =2 = >0
Z— Y anppz" + 02 Y bypnz"

n=2 n=2

forz € U. Letting z — 1~ through real values yields condition (3.2). Conversely, for h and g given by (3.1),

20—1 = 20—1=2
(h* §) * |:Z+x-§—o§a Zz:| —UW* [ﬁ_gz_x;—oéa z :|

(1—2)2 (1—2)2
. n—a  n+a

> |z [1 ‘21 |an||¢>n|—c722l |bn||¢n|}
n=2 -« n=2 -

which is non-negative by hypothesis, thus proving sufficiency of condition (3.2). O

We can obtain as a corollary sharp bounds for |f (z)|, for f € TSE, (¢, 0,a).

Corollary 3.1. Let ¢(2) =z + Y oo, ¢puz" With ¢ > ¢ (n > 2),and |o| > 322 If f € TS} (¢, 0, @), then for |z] =T < 1,

— 24«
1— 1-—
P P <@ <4
(2 — )¢, (2 —a)¢,
. . . ., 1— 2
The result is sharp with equality for f(z) = z (2—a‘)y¢22 .

Thus the range of functions in TSE, (¢, 0,a) covers thedisk |lw| <1 — (1 —a)/[2 — @)pa].
It can also be seen that the class TS,g (¢, 0, @) is convex.
We now determine the extreme points of the class TSE, (p, 0, ).

Theorem 3.2. Let
hi(z) ==z ha(z) =z 1« Z", and g,(2) =z + 1-a Z', n=2,3,..)
1 R k) n L (n_a)¢n k) gl’l o O'(n+a)¢n k) - 9 EECIEIRY )

A function f € TSE, (¢, 0, «) ifand only if f can be expressed in the form

o0

f@) =) Cnhn + vagn),

n=1

where A, > 0,9, > 0,11 =1 — Z,ﬁz(kn + yn), and y; = 0. In particular, the extreme points of TSE,((;&, o,a) are {h,} and
{gn}.

Proof. Let
> > 1—«a >0 1-—«
Z) = Anhy + =z - Ap———2"+ 0 T
f@ ;( nhn =+ Vn&n) n:Zz n(n_a)¢n n;yno_z(n+a)¢n

Since



R.M. Ali et al. / Applied Mathematics Letters 23 (2010) 1243-1247 1247

X n— o, 1-—o 2 n +a 1—« 2
$n=) n+rm)=1-2=1,
;1 ") 2; "o2(n+ )y ; e
it follows from Theorem 3.1 that f € TS}(¢, o, a)
Conversely, if f € TS0 (¢p,0,a),thena, < (n and b, < ﬁ Set

n—a n+ao e
An = an¢na Yn = _ n¢n s AM=1-— Z(A” +¥n), and y; =0.

1— 1—a
Then
o0 o0 [e¢]
D Ouhn+vng) =2 =) a2 +0 Y bZ' =f(@2). O
n=1 n=2 n=2
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